首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8980篇
  免费   737篇
  国内免费   2881篇
电工技术   33篇
综合类   161篇
化学工业   1496篇
金属工艺   4784篇
机械仪表   216篇
建筑科学   80篇
矿业工程   630篇
能源动力   483篇
轻工业   24篇
水利工程   8篇
石油天然气   29篇
武器工业   24篇
无线电   207篇
一般工业技术   3301篇
冶金工业   911篇
原子能技术   62篇
自动化技术   149篇
  2024年   19篇
  2023年   398篇
  2022年   414篇
  2021年   308篇
  2020年   515篇
  2019年   543篇
  2018年   374篇
  2017年   355篇
  2016年   382篇
  2015年   431篇
  2014年   687篇
  2013年   717篇
  2012年   728篇
  2011年   736篇
  2010年   551篇
  2009年   656篇
  2008年   360篇
  2007年   558篇
  2006年   511篇
  2005年   286篇
  2004年   283篇
  2003年   345篇
  2002年   263篇
  2001年   268篇
  2000年   208篇
  1999年   216篇
  1998年   180篇
  1997年   165篇
  1996年   136篇
  1995年   126篇
  1994年   100篇
  1993年   156篇
  1992年   142篇
  1991年   61篇
  1990年   84篇
  1989年   49篇
  1988年   27篇
  1987年   37篇
  1986年   40篇
  1985年   10篇
  1984年   31篇
  1983年   26篇
  1982年   29篇
  1981年   25篇
  1980年   9篇
  1978年   12篇
  1976年   7篇
  1975年   4篇
  1964年   6篇
  1956年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
RE disilicates are good candidates as environmental/thermal barrier coating for SiCf/SiC composite in harsh gas turbine engines. We designed (Yb1?xHox)2Si2O7 solid solutions and studied mechanical properties, thermal properties, and water vapor resistance. Powders with different compositions were synthesized by pressureless sintering, and bulk samples were prepared by Spark Plasma Sintering (SPS). Polymorphic changes with temperature and composition of the solid solutions were examined. Through doping Ho into Yb2Si2O7, water vapor corrosion resistance is significantly promoted, and thermal expansion coefficient is maintained close to that of Si-based ceramics. Compared with host disilicates, thermal conductivity of solid solutions are decreased, and mechanical properties, including Vickers hardness and fracture toughness, are increased. A two-phase domain is found at (Yb1/2Ho1/2)2Si2O7, and the γ to δ phase transition of Ho2Si2O7 is observed during SPS. Among all samples, γ-(Yb1/3Ho2/3)2Si2O7 possesses superior high temperature stability, and excellent water vapor resistance, indicating its performance as environmental/thermal barrier coating.  相似文献   
2.
《Ceramics International》2022,48(15):21268-21282
Mullite-Al2O3-SiC composites were in-situ synthesized through carbothermal reduction reaction of fly ash (FA) with a high alumina content and activated carbon (AC). The effects of sintering temperature, holding time, and amount of AC on the β-SiC yield, microstructure, dielectric properties, and electromagnetic (EM) absorption performance of the composites in the 2–18 GHz frequency range were studied. The results show that increasing the AC improves the porosities of the composites, with the highest porosity of 56.17% observed. The β-SiC yield varies considerably as the sintering parameters were altered, with a maximum yield of 23% achieved under conditions of 12 wt% AC, 1400 °C sintering temperature, and 3 h holding time. With a thickness of 3.5 mm, this composite has excellent EM absorption performance, exhibiting a minimum reflection loss (RLmin) of -51.55 dB at 7.60 GHz. Significantly, the maximum effective absorption bandwidth (EAB) reaches 3.39 GHz when the thickness is 3.0 mm. These results demonstrate that the composite prepared under ideal conditions can absorb 99.99% of the waves passing through it. Because of the interfacial polarization, conductive loss, and impedance matching of the heterostructure, the synthesized mullite-Al2O3-SiC composites with densities ranging from 1.43 g/cm3 to 1.62 g/cm3 demonstrate outstanding EM attenuation capabilities. Therefore, this study presents a remarkable way of utilizing fly ash to fabricate inexpensive, functional ceramic materials for EM absorption applications.  相似文献   
3.
MgB2 superconductor pellets were synthesized through Mg gas infiltration method using nanosized- and microsized B powders. There was a marked difference in the superconducting properties of the two samples, particularly in the pinning force and dominant pinning mechanism. The microstructures of the samples were observed using HR-TEM and STEM-HAADF, and the results showed that the primary reason for the difference in the superconducting properties is the distribution of the nanosized second-phase particle MgO. Additionally, a feasible reaction model for the Mg gas infiltration method was established. Compared to the Mg liquid infiltration method, the gas infiltration showed better penetrability ability with a small amount of residual Mg. This study presents a novel synthesis process to fabricate an MgB2 pellet with superior density and superconducting properties. This method can be used in multiple applications such as superconducting bearings, compact superconductor magnets, and magnetic shielding.  相似文献   
4.
A series of 3 C-SiC coatings were prepared by organometallic chemical vapor deposition (MOCVD) using precursor solution containing a varying proportion of commercial-grade hexamethyldisiloxane (HMDSO) and n-hexane. The phase composition, bonding state, and microstructure of 3 C-SiC coatings were studied in detail by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The microstructure and mechanical properties of the optimal 3 C-SiC coating were characterized by scanning transmission electron microscopy (STEM) and nanoindentation, respectively. Our results revealed that the amount of undesired graphite phase can be significantly reduced in the 3 C-SiC coating by introducing hydrogen gas in the reaction chamber alongside increasing the ratio of HMDSO/n-hexane in the precursor mixture. The STEM results revealed that the optimal coating was predominantly composed of nano-crystalline 3 C-SiC grains alongside a small amount of amorphous graphite. The hardness and elastic modulus of the optimal coating were 38.19 GPa and 363.2 GPa, respectively.  相似文献   
5.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
6.
7.
ZrB2-MeC and ZrB2-19 vol% SiC-MexCy where Me=Cr, Mo, W were obtained by pressureless sintering. The capability to promote densification of ZrB2 and ZrB2-SiC matrices is the highest for WC and lowest for Cr3C2. The interaction between the components results in the formation of new phases, such as MeB (MoB, CrB, WB), a solid solution based on ZrC, and a solid solution based on ZrB2. The addition of Cr3C2 decreases the mechanical properties. On the other hand, the addition of Mo2C or WC to ZrB2-19 vol% SiC composite ceramics leads increased mechanical properties. Long-term oxidation of ceramics at 1500 °C for 50 h showed that, in binary ZrB2-MexCy, a protective oxide scale does not form on the surface thus leading to the destruction of the composite. On the contrary, triple composites showed high oxidation resistance, due to the formation of dense oxide scale on the surface, with ZrB2-SiC-Mo2C displaying the best performance.  相似文献   
8.
To elucidate the crystal growth process of hematite in high-temperature lead-free multicomponent alkali borosilicate glass, which is essentially important to control the color of red overglaze enamels, frit and hematite mixture is heat-treated and subjected to microscopic observations. Hematite particles slightly grew due to sintering at low temperature. Once the glass matrix formed near the softening point of frit, hematite dissolved into glass fluid. Hematite crystal growth concomitantly ensued with decrease in the number of hematite particles via Ostwald ripening as the temperature increased. The grown particles exhibited an anisotropic morphology with straight outlines reflecting crystal planes, the morphology of which is completely different from those grown by sintering and particles prior to heating. These results suggest that comprehensive understanding of frit and hematite from the perspectives of glass science and chemistry as well as powder technology are important to truly control the color of red overglaze enamels.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号